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Abstract.Distributed Constraint Optimization (DCOP) is rapidly emerging as a
prominent technique for multiagent coordination. Unfortunately, rigorous quan-
titative evaluations of privacy loss in DCOP algorithms have been lacking despite
the fact that agent privacy is a key motivation for applying DCOPs in many ap-
plications. Recently, Maheswaran et al. [1, 2] introduced a framework for quan-
titative evaluations of privacy in DCOP algorithms, showing that early DCOP
algorithms lose more privacy than purely centralized approaches and question-
ing the motivation for applying DCOPs. Do state-of-the art DCOP algorithms
suffer from a similar shortcoming? This paper answers that question by investi-
gating several of the most efficient DCOP algorithms, including both DPOP and
ADOPT. Furthermore, while previous work investigated the impact on efficiency
of distributed contraint reasoning design decisions, e.g. constraint-graph topol-
ogy, asynchrony, message-contents, this paper examines the privacy aspect of
such decisions, providing an improved understanding of privacy-efficiency trade-
offs. Finally, this paper augments previous work on system-wide privacy loss, by
investigating inequities in individual agents’ privacy loss.

1 Introduction

Personal assistant agents are an emerging tool for collaboration in businesses, office
environments and research organizations [3–5]. To perform their function, these agents
must be endowed with potentially private information about their users, e.g. salary, ca-
pabilities, and preference information about meetings and schedules. In the course of
negotiations and conflict resolutions, the exchange of some private information is nec-
essary to achieve a good team outcome. For humans to entrust their personal assistant
agents with private information, they need assurance that their privacy will be protected.
Thus, understanding how such applications lose privacy in multiagent negotiations is
crucial for their success.

Promising approaches in distributed constraint optimization (DCOP) [5–7], enable
distributed conflict resolution and coordination while maintaining users’ privacy. In-
deed, maintaining privacy is a fundamental motivation in DCOP [5, 7–9], and thus
DCOP is now heavily applied in software personal assistants [3–5, 10]. One approach
to privacy in DCOP is to use cryptographic techniques [11] that ensure watertight pri-
vacy but require the use of external servers or computationally intensive cryptographic
operations that may not always be available or justifiable for their benefits. Instead, we
focus on a second approach in which researchers provide metrics for quantifying the
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privacy loss in DCOP algorithms [1,2,10,12,13]. If we can bound privacy loss in spe-
cific DCOP algorithms, then cryptographic techniques may be avoidable in situations
where they are impractical.

Unfortunately, there are three key weaknesses in the previous work on privacy loss
analysis in DCOP. First, recent cross-algorithm privacy loss analysis focused on a lim-
ited number of DCOP algorithms but indicated that these algorithms preserve less pri-
vacy than a centralized approach [1, 2], seriously undermining a key motivation for
these algorithms. Thus, given the importance of privacy in motivating applications of
DCOPs, it is crucial to analyze some of the most used and most recent DCOP algorithms
to see whether they are similarly undermined and to measure their cross-algorithm per-
formance. Two notable omissions in previous analysis are ADOPT [7] and DPOP [14],
both among the most efficient DCOP algorithms that provide very disparate points in
the design space of DCOP algorithms. Second, while the impact of DCOP design de-
cisions on efficiency has been investigated — in particular, constraint-graph topology,
asynchrony, and message content — the impact on privacy has not. This tradeoff be-
tween privacy and efficiency is critical to DCOP algorithms. Third, while previous in-
vestigations have examined system-wide privacy loss, it is also important to investigate
inequities in privacy loss, e.g. does one agent accumulate more information than others?

This paper overturns the significant negative results from [1, 2] by providing posi-
tive privacy results for several state-of-the-art DCOP algorithms not considered in [1,2].
This paper (i) analyzes ADOPT, DPOP and SynchID [7], three recent DCOP algo-
rithms; (ii) analyzes the privacy impact of DCOP design decisions, including constraint-
graph topology, asychrony and message-contents; and (iii) analyzes disparities in pri-
vacy loss among individual agents. These contributions are obtained by a large-scale
experimental investigation of privacy loss in DCOP algorithms in the VPS (Valua-
tions of Possible States) analysis framework [1, 2], using several distributed meeting
scheduling scenarios. To further understand privacy loss in DCOP, we also investigate
upper bounds on privacy loss in DCOP algorithms. Overall, while our results are more
promising than [1, 2], our upper bound results indicate the need for further attention to
privacy preservation in DCOP algorithms.

2 Background

A DCOP consists of a set of variables assigned to agents who control their values.
The agents must coordinate their local choice of variable values so that a global objec-
tive function, modeled as a set of distributed valued constraints, is optimized. Figure
1(a) shows an example DCOP with four agents. Each constraint is defined by the table
shown, wheref (di ,d j) denotes the cost of assigningxi = di andx j = d j . The objective
is to find an assignmentA∗ such that the total cost, denotedF, is minimized:

F(A) =
∑
xi ,x j

fi j (di ,d j),wherexi ← di , x j ← d j ∈ A (1)

Thus in Figure 1,x1, x2, x3, and x4 are variables each with domain{0,1}, and the
optimal assignment is(x1,1), (x2,1), (x3,1), (x4,1).

Given the recent interest in DCOP, several competing algorithms for DCOPs have
now been proposed, including Adopt [7], SynchID [7], DPOP [14], and OptAPO [6].
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Fig. 1.DCOP

In addition, SynchBB [15] is an early algorithm for DCOP. Previous work has provided
a comparison of privacy loss of a centralized approach with OptAPO and SynchBB,
suggesting that the centralized approach may lead to lower privacy loss. Hence this
paper focuses on the remaining algorithms above. These algorithms also present novel
design choices, or occupy a prominent place in the algorithmic space. The following
describes key characteristics of these remaining algorithms:

Adopt is an asynchronous complete DCOP algorithm, guaranteed to find the op-
timal solution. In Adopt, an agent communicates only one value from its domain at a
time, or one cost message (indicating the cost of an assignment to some set of vari-
ables) at a time. Such restricted communication is intended to both limit the size each
message, and preserve privacy. Additionally, Adopt’s asynchrony, combined with sev-
eral heuristic techniques, provides significant speedups over synchronous approaches.
A key feature of Adopt is that the DCOP graph is converted into a Depth-First Search
(DFS) tree in which constraints can exist between a variable and any of its ancestors or
descendants, but not between variables in separate sub-trees (e.g. see Figure 1). Such
a graph allows increased parallelism in the search. Given such a DFS tree, Adopt uses
a search strategy similar to iterative deepening search. As a leading DCOP algorithm,
Adopt provides an interesting case study. Its asynchrony and restricted communication
are also of interest.

SynchID is an iterative deepening algorithm similar to Adopt, with two primary
differences. First, SynchID requires that variables be ordered in a linear chain, and
thus cannot take advantage of the parallelism of a tree structure, as Adopt can. Second,
SynchID is a synchronous algorithm, in which messages are sent only at predetermined
intervals, with agents executing sequentially according to the chain ordering, whereas
in Adopt, agents send messages concurrently and asynchronously. Therefore, SynchID
usually requires more message cycles (and time) than Adopt, but allows for fewer ac-
tual messages to be sent. The reduced number of messages was expected to provide
significant additional privacy in SynchID, thus illustrating that Adopt’s pursuit of effi-
ciency via asychrony is detrimental to privacy. Thus, SynchID is included in our set of
algorithms to to understand the impact of asynchrony on privacy loss.

DPOP [14] is a synchronous complete DCOP algorithm. Also, one of the leading
DCOP algorithms, DPOP also requires the creation of a DFS tree similar to Adopt.
However, a key difference in DPOP is that agents communicate to their parents the
cost of their subtree’s best assignment for every value in the parent’s domain (or every
combination of parent and pseudo-parents’ values). A variable elimination based al-
gorithm, DPOP is able to synchronously communicate significantly fewer messages to
solve DCOPs (at least when compared to Adopt), but at the cost of significantly larger
message size. The expectation was that due to DPOP’s large amount of information
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per message, privacy loss would be significant, making DPOP a prime candidate for
comparison with other algorithms.

SynchBBor synchronous branch-and-bound was studied in [1,2]. However, we fo-
cus on a slightly modified SynchBB where some key unuseful information is not com-
municated. In particular, the original SynchBB organized agents in a chain, and com-
municated all the value assignments received from its parents downstream, our modi-
fied version only communicates relevant value assignments, in the interest of privacy.
SynchBB, a synchronous algorithm that sends cost messages up and down a chain, pro-
vides a fourth point of comparison and a measure of the impact of message directions
on privacy loss.

3 Experimental Methodology

Given the applicability of DCOP to the personal assistant agent domain (specifically
distributed meeting scheduling) [3] as well as the privacy concerns inherent in this do-
main [1, 12], we focus our investigation specifically on privacy loss in a DCOP formu-
lation for the distributed meeting scheduling problem. The results of this work can be
generalized to other problems in which cooperative agents have privacy concerns.

Problem Formulation: We define a meeting/event scheduling problem based on
the formalism of [5] as follows:

–R := {R1, . . . ,RN} is a set ofN agents (representing people).
–E := {E1, . . . ,EK} is a set ofK events.
–T := {1, . . . ,T} is the set of available timeslots.
–Ek := (Ak,Vk) is thekth event, whereAk ⊂ R are the people required to attend the

event andVk := {Vk
1, . . . , Vk

N} is a value vector, whereVk
n represents the value to

thenth person for scheduling eventk.
–V0

n(t) : T → �+ denotes thenth person’s valuation for keeping time slott free, due
to a preference to keep that time open or the value of an already scheduled event.

We define a scheduleS as a mapping from the event set to the time domain where
S(Ek) ∈ T denotes the time slot committed for eventk. This implies that all people
in Ak must agree to assign the time slotS(Ek) to eventEk in order for the event to be
scheduled, allowing them to obtain the utility for attending it. A scheduling conflict oc-
curs if two events with at least one common required attendee are scheduled at the same
time. An assignment ofS(Ek) = ∅ implies that eventEk is not scheduled. We define
a person’s utility to be the difference between the sum of the values from scheduled
events and the aggregated values of the time slots used for those scheduled events. The
team wants to maximize the sum of utilities of all its members in order to best utilize
their assets.

To explore the privacy loss in DCOP algorithms for meeting scheduling, we express
the problem using the PEAV-DCOP representation [5], which is motivated by privacy
considerations. In a DCOP, each agent controls a set of variables. In PEAV-DCOP, each
of these variables in an agent’s set corresponds to an event (meeting) that agent’s user
must attend; i.e. each event is represented by a set of variables, each controlled by one
of that event’s attendees. This allows us to design constraint utility functions where
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all valuation information is on internal links, thus maintaining privacy. The DCOP is
expressed as follows:

–For each eventEk,Xk := {xk
n : Rn ∈ Ak} is a set of variables wherexk

n ∈ {0,1, . . . ,T}
denotes the start time for eventEk in the schedule ofRn, a required person forEk.

–X := ∪K
k=1Xk is thus the complete set of variables in the DCOP. Each variable’s

domain is the set of timeslotsT .
–For each agent,Rn, X̃n := {xk

n ∈ X} ⊂ X is the set of variables controlled byRn,
where each variable represents an event. If|X̃n| = 1, let Xn := X̃n ∪ {x0

n} where
x0

i ≡ 0 is a dummy variable, in order to ensure that intra-agent constraints exist for
all agents. Otherwise,Xn := X̃n.

–For each eventEk, inter-agent constraints exist between all pairs of variablesxk
m, x

k
n

in Xk, such thatf (tkm, t
k
n) = −∞ if tkm , tkn and f (tkm, t

k
n) = 0 otherwise. (We usetkn

to mean the timeslot chosen by agentRn for eventEk). This is to ensure that all
participants in an event agree on its time (or agree that it will not be scheduled).

–For each agent,Rn, intra-agent constraints exist between all pairs of variablesx j
n, xk

n,
such that the sum of rewards on all intra-agent constraints forRn equals the net gain
to Rn, i.e.

∑
Vk

n − V0
n(tkn) if no two variables have the same valuet > 0. Otherwise,

this sum should equal−∞ to avoid double-booking any time slots. The mapping
of costs and rewards onto individual constraints could be done many ways, such
as splitting the net reward for each meeting evenly among all outgoing intra-agent
constraints from that meeting.

Scenarios in PEAV-DCOP:The majority of scheduling instances in a functional per-
sonal assistant agent system will consist of a small number of meetings that need to be
negotiated simultaneously. This notion of a small number of meetings is also shared by
[4, 11] and as members of a research organization, this is a situation that the authors
commonly observe. While larger-scale problems may present themselves, if privacy is
a critical factor, the coordination protocols must be effective for these small-scale in-
stances. We consider seven scenarios of three (R= {A, B,C}) or four (R= {A, B,C,D})
agents. The PEAV-DCOP graphs in Figure 2 show the events, labeled by their attendees,
and decomposed into variables and constraints.

Fig. 2.Scenarios: Transparent boxes represent agents and the dark, inner boxes are meeting vari-
ables. Thick lines are intra-agent contraints and thin lines are inter-agent constraints.
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VPS: Measuring Privacy Loss:The Valuation of Possible States (VPS) framework
[1,2] was proposed to quantitatively evaluate privacy loss in multiagent settings. Quan-
tification of privacy loss in VPS is based on a valuation on the other agents’ estimates
about (i.e. a probability distribution over) an agent’s possible states. There are three key
elements in VPS: (i) agentRn’s private information, modeled as a statesn ∈ Sn, where
Sn is a set of possible states thatRn may occupy; (ii) other agents’ estimates about agent
Rn’s possible states, expressed as a probability distribution�n((Sn)N−1), (iii) the utility
that agentRn derives from the distribution of other agents’ beliefs aboutRn’s states,
yielding value function�n(�n((Sn)N−1)). Note that�n((Sn)N−1) = [�1

n(Sn)�2
n(Sn) · · ·�N

n (Sn)],
where� j

n(Sn) provides agentRj ’s probability distribution over states of agentRn.
In applying VPS to our meeting scheduling scenario, encoded as a PEAV-DCOP,

the initial task is to identify the information that an agent should consider private, i.e.
the data that identifies the state of its human user. In our meeting scheduling problem, it
is clear that the valuation of time,V0

n(t), explicitly captures the preferences that will be
used in the collaborative process. In addition, the rewards for attending various events
{Vk

n : Rn ∈ Ak} are another component that agents may wish to keep private. For the
sake of simplicity in analysis, we will assume we are in a setting where event rewards
are public information, though the analysis can be extended to capture situations where
this information is private as well. IfV0

n(t) ∈ V whereV is a discrete set and there are
T time slots in a schedule, the statewn of thenth agent is an element of the setSn = V

T

and can be expressed as a vector of lengthT. Before negotiation, each agent knows only
that the other agents exist in one of|V|T possible states. After negotiation, each agent
will be modeled by all other agents whose estimate of the observed agent is captured by
�n((Sn)N−1). One question is how an agent should assign values to these estimates of
possible states through which others see it. Different possibilities for how these values
may be assigned are captured in six metrics introduced in [1] that define the privacy of
a single agent with respect to all others. We list them briefly below.

Due to the nature of messaging in DCOPs, the typical form of information gathered
is the elimination of a possible state. LinearS gives the number of states not eliminated
by other agents:

�n(�n((Sn)N−1)) =
∑
j,n

∑
sn∈Sn

I
{�

j
n(sn)>0} (2)

whereI{·} is an indicator function.
The GuessS metric models privacy as the sum of probabilities that each other agent

will be unable to guess the observed agent’s state accurately, given that their guesses
are chosen uniformly over their set of possible states for the observed agent:

�n(�n((Sn)N−1) =
∑
j,n

1− 1∑
s∈Sn

I
{�

j
n(s)>0}

 (3)

EntropyS was introduced in [12] and considers privacy loss from an information-
theoretic perspective:

�n(�n(Sn)N−1) := log2


∑|V|T

j=1 I{�G
n (sj )>0}

|V|T

 (4)
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whereG = R \ Rn.
Each of the metrics has an analogous metric below, representing privacy loss on a

per-timeslot basis, averaged over all timeslots.
LinearTS:

�n(�n((Sn)N−1)) =
∑
j,n

T∑
k=1

|V|∑
m=1

I
{maxsn∈Sn:sn(k)=m�

j
n(sn(k)=m)>0} (5)

GuessTS:

�n(�n((Sn)N−1) =
∑
j,n

T∑
k=1

1− 1∑|V|
m=1 I

{maxsn∈Sn:sn(k)=m�
j
n(sn(k)=m)>0}

 . (6)

EntropyTS:

�n(�n(Sn)N−1) :=
∑
j,n

T∑
k=1

log2


∑|V|

m=1 I
{maxsn∈Sn:sn(k)=m�

j
n(sn(k)=m)>0}

|V|

 (7)

We can scale all functions with a transformation of the form�̃ = α(� − β) with
appropriate choices ofα andβ such that the valuations span[0 1] with zero being the
worst level and one being the ideal level of privacy. We can then subtract these scaled
functions from one to show an agent’sprivacy loss, for which a value of zero means
that no privacy is lost and a value of one means that all private states are known to all
other agents.

3.1 Inference Algorithms

Based on the VPS framework, and the privacy metrics given above, we define a process
by which agents can infer information about other agents while running various DCOP
algorithms, in order to measure the likely privacy loss between agents in a DCOP. All
inference experiments for all algorithms (including centralized) start with the same ini-
tial assumptions. We assume that the constraint graph and the value (reward) of each
meeting is known to all agents, but the valuations of time slots are private. These as-
sumptions are exactly as in [1,2], allowing a comparison the two results; in addition, for
the scenarios with few meetings, it is reasonable to assume that the rewards for meet-
ings are public knowledge. Based on these assumptions, we developed the following
methods for agent inference for SynchID, Adopt and DPOP.

Centralized: In a centralized algorithm, the agents all send their valuation infor-
mation to one agent, who computes the result and returns. In every case the centralized
agent can “infer” the valuations perfectly [1,2]. Since we express our results as an aver-
age of each agent’s privacy loss, the privacy loss of the centralized algorithm is1

N (for
all six metrics) whereN is the total number of agents.

SynchID: SynchID is a synchronous algorithm in which agents are ordered in a
chain, and messages are passed up and down the chain. An upward message contains
a numbermn, which is equal to the best currently known total reward for the chain.
For PEAV, the total reward for the chain is equal to the sum of differences between the
valuation of a scheduled meeting and the valuation of the time slot it occupies for every
scheduled meeting for every person. We henceforth use∆Ek

Rn
(t) = Vk

n − V0
n(t) to denote
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the change in utility to thenth agent for scheduling thekth event at timet. When agent
Rn receives an upward message it knows thatmn = a sum of∆s downstream fromRn.

To illustrate how possible states can be eliminated in SynchID, we outline the in-
ferences that one can make from messages received in Scenario 1. In SynchID, upward
messages to agentRn contained information of the form:

mn =
∑
∆Ek

Rn
(tEk) +

∑
∆Ek

Rn
(t̃Ek), (8)

where the summations include events downstream fromRn. tEk is the time of an event
Ek when that time is known toRn (becauseRn is a participant in eventEk), and t̃Ek is
the time of an eventEk when that time is not known toRn. For example, sinceB knows
when meetingBC is scheduled, as well as the value of meetingBC, a message from
C to B (mB) allows B to know VC(tBC) (the valuation vector component ofC at the
time at which meetingBC is scheduled). Similarly, a message fromB to A (mA) allows
A to know vB(tAB) + vB(t̃BC) + vC(t̃BC), where t̃BC is some time not equal totAB, but
otherwise unknown toA. Each one of these relationships allows the observing agent to
reduce the number of possible states the other agents could be in. We obtain the privacy
loss for SynchID for the privacy metrics introduced earlier by allowing each agent to
collect these relationships, and iterate over them, testing each relationship against a list
of possible states for the other agents, discarding states that conflict with any of the
relationships.

Adopt: Adopt contains the same type of upward messages as in SynchID, but, due
to its asynchrony, it may be impossible for agents to tell how many∆s are contained
in the reward component of each message, information helpful for inference. When a
message is received, we know it contains rewards for at least one agent more than the
previous message it sent (in the case of SynchID, it is always one agent, hence the=

sign). However, due to asynchrony, our agent might have included more descendants in
the message. So, for our inference, we use a≤ sign. The inference equation is:

mn ≤
∑
∆Ek

Rn
(tEk) +

∑
∆Ek

Rn
(t̃Ek), (9)

This relation changes to an equality in the special case when only one agent is down-
stream from agentRn.

DPOP: In the DPOP algorithm, each agent sends exactly one cost message to its
parent. This message consists of a table of all possible assignments of constrained up-
stream events and the aggregate costs of those assignments to the agents downstream
of Rn. Each entry in the table is used to create inference rules like those in SynchID.
The events in the entry are the∆Ek

Rn
tEk terms and other events with participating agents

downstream ofRn are the∆Ek
Rn

t̃Ek terms.

mn =
∑
∆Ek

Rn
(tEk) +

∑
∆Ek

Rn
(t̃Ek), (10)

SynchBB: Inference rules for SynchBB are as described in previous work [1,2].

4 Experimental Results

In this section, we present experimental results from the seven scenarios. We begin with
comparisons of privacy loss in the studied algorithms according to the EntropyTS met-
ric, then examine the new algorithms using all our metrics. We introduce a new metric to
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highlight privacy benefits of all studied DCOP algorithms over centralized approaches.
We then explore the privacy impact of more sophisticated inference techniques and di-
verse topologies.

For the three-agent scenarios, we variedT, the number of timeslots, from 3 to 7
while holding |V| = 3. Then, we varied|V| from 3 to 7 while holdingT = 3. For
the four-agent scenarios, for reasons of computational complexity, we variedT from
3 to 4 while holding|V| = 3 and then varied|V| from 3 to 5 while holdingT = 3
(UsingT = 7 in a four-agent scenario would require an agent to consider over a billion
states:3(3·7)). For each(T, |V|) pair, we performed 10 runs for each of the following
algorithms: SynchID, Adopt, SynchBB and DPOP. For each run, the privacy loss for
each agent was measured using each of the six metrics, assuming the agents were using
the inference algorithms given in Section 3. The systemwide privacy loss was expressed
as the arithmetic mean of each agent’s privacy loss:

∑
N�n/N.

Space limitations preclude us from presenting all our results. Thus, in some cases,
we present results from only three of the seven scenarios. We also present results only
on variations of valuations, although the results from variations in timeslots were simi-
lar (complete results available athttp://teamcore.usc.edu/dcop/privacy). In each of our
graphs, each data point is an average of 10 runs, and we provide statistical significance
results to support our main conclusions. Finally, we use a chain topology for all al-
gorithms, to allow cross-algorithmic comparison (since not all algorithms could use a
DFS tree as noted in Section 2), and to separate out the the impact of graph topology
on privacy in a separate experiment.

Cross-algorithm comparison:Figure 3 shows the comparison of privacy loss for
the four algorithms mentioned above, for each of the seven scenarios, as well as pro-
viding a comparison of privacy loss with the centralized approach. Thex-axis plots the
different number of valuations (with number of time-slots fixed at 3) and they-axis plots
privacy loss. The thick horizontal line shows the centralized approach, for scenarios 1-4
(three agents), its privacy loss is 0.33, but for scenarios 5-7 (four agents) it is 0.25. The
privacy loss in the centralized case is the same no matter which of the six metrics is used
to measure it. We use the EntropyTS metric as the metric for privacy loss in this result;
as seen later, EntropyTS provides results that are in the mid-range among all metrics.
Nonetheless, we provide results for other metrics, and mostly these metrics agree with
the conclusions drawn using the EntropyTS metric.

We conclude the following from Figure 3: (1) Except for SynchBB, the remaining
algorithms have a privacy loss that is lower than the centralized approach. In contrast
with the negative results presented in [1,2], which illustrated DCOP algorithms as hav-
ing worse privacy loss than a centralized approach, this is a significant positive result.
Indeed, the privacy loss in Adopt and DPOP is less than half that of the centralized ap-
proach. Furthermore, statistical tests show that Adopt performs better than centralized
in all scenarios and DPOP performs better than centralized in all except scenario 4 (sig-
nificance level of 5%). (2) DPOP and Adopt had very similar privacy loss, despite their
vastly different approaches. In particular, despite DPOP’s one shot communication of
all information, it performed surprisingly well in terms of privacy loss. Adopt does per-
form slightly better than DPOP for privacy loss (see in particular Scenario 4), but not
to the level anticipated at least in these scenarios. (3) Adopt significantly outperformed
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Fig. 3.Privacy loss comparisons of the different algorithms.

SynchID in terms of privacy protection. The asynchrony in Adopt was expected to be
significantly detrimental to privacy due to the increased numbers of messages. Instead,
we found that the uncertainty introduced by asynchrony as to which agents participate
in each cost message provides significant privacy gains compared to synchronous algo-
rithms such as SynchID. (4) Despite modifications to improve privacy, SynchBB still
performed the worst in terms of its privacy loss; often worse than centralized. The key
reason for SynchBB’s low performance is its bi-directional messaging of cost informa-
tion. Thus, it is important to avoid bi-directional cost propagation in DCOP algorithms
when privacy is a goal.

Cross-metric comparison: We performed cross-metric comparisons for Adopt (Fig-
ure 4) and DPOP (Figure 5), in which privacy loss was plotted for each of the six metrics
from Section 3. Privacy loss for scenarios 1, 4, and 5 are plotted on they-axis in each
graph and the number of valuations is varied along thex-axis; the number of times-
lots was fixed at three. In all cases, the metric indicating the highest privacy loss was
LinearS, usually well above the others. Adopt outperformed the centralized approach
according to all metrics except the LinearS metric, for which the centralized approach
gave lower privacy loss in Scenario 4. Similarly, DPOP outperformed the centralized
approach for all metrics except LinearS and except for Scenario 4, where half the met-
rics placed it above the centralized approach, and half placed it below. However, for
both algorithms, at least half of the metrics showed them to outperform the centralized
algorithm in every scenario, and in many scenarios, all of the metrics showed this to be
true. This was also true for the SynchID algorithm, but results are omitted due to space
considerations.
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Fig. 4.Adopt: Evaluation across different metrics
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Fig. 5.DPOP: Evaluation across different metrics

We conclude the following from Figure 4 and Figure 5: (1) Even if we examine
other metrics beyond EntropyTS, DCOP algorithms do not suffer from privacy loss to
the extent seen in the earlier investigation [1, 2], further confirming the positive results
seen earlier. (2) Metric-to-metric comparisons in general also appear to concur with
the earlier conclusion about similarity of privacy loss in DPOP and ADOPT. However,
LinearS and EntropyS do show a divergent trend between the two – with Adopt more
significantly outperforming DPOP in terms of these metrics.

MAX metric: So far, all metrics measured the loss of privacy from one agent to
another, which was then averaged to find the systemwide privacy loss. The effect of one
agent learning more than others, and gaining an asymmetric advantage over them, is
not considered. To address this issue, we devised the MAX metric. In this metric, we
consider only the total privacy loss to the single agent that learns the most information
about other agents (by EntropyTS), rather than the mean of the individual privacy loss
figures. Figure 6 shows the results for all the algorithms according to the MAX metric
for all seven scenarios, withT = 3. The number of valuations is plotted on thex-axis
and the privacy loss is plotted on they-axis.

We conclude the following from the MAX metric results: (1) The central agent in
a centralized algorithm always learns all the other agents’ valuations. Thus, the cen-
tralized algorithm always gets a value of one according to the MAX metric. The MAX
metric shows that there is always a privacy benefit obtained by using DCOP algorithms,
even those that perform worse than centralized by our other metrics, if the major privacy
concern is an advantage that can be gained by one agent accumulating knowledge. (2)
Even with the MAX metric, DPOP and Adopt tended to outperform SynchBB, while
SynchID varied widely from scenario to scenario.

Upper bounds: The results so far all used the inference algorithms described in
Section 3.1, and provided a lower bound on privacy loss, since inference was done using
only the contents of messages containing costs. Although lower bounds are sufficient to
demonstrate a negative result, they must be augmented to demonstrate a positive one.
While there is no theoretical limit to the quantity of domain knowledge an inference
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Fig. 6.Algorithms compared using the MAX metric: Centralized has a privacy loss of 1

algorithm may possess (making a tight upper bound impossible to calculate), we can
calculate upper bounds assuming agents know only the message contents and graph
structure.

We calculated upper bounds on privacy loss for one of the most promising DCOP
algorithms: DPOP. We used a brute force approach which generated all possible combi-
nations of input valuations, ran DPOP on them to generate a trace of the messages each
combination would produce and then for each agent matched these up to the messages
that were actually received. We performed simulations of this type for DPOP, which
took several days to run, compared to the several hours taken by our primary inference
algorithms. Results for upper and lower bound inference for DPOP using all six metrics
are shown in Figure 7. Scenarios 1, 4, and 5 are shown for three timeslots and three
valuations, with the metric plotted on thex axis and the privacy loss plotted on they
axis. Due to asynchrony and the randomness in a variable’s initial choice of value, it is
not possible to analyze ADOPT with this approach.

For each scenario, the lower bound showed DPOP outperforming the centralized
approach (except on LinearS for Scenario 4) while the upper bound was comparable or
worse than centralized. We conclude that while privacy results on recent DCOP algo-
rithms are encouraging, there is still a need for improvement.

Asynchrony: The privacy loss of an asynchronous algorithm such as Adopt is dif-
ficult to analyze. Due to its asynchrony, it may be difficult for agents to ascertain which
(or even how many) other agents’ valuations are part of any particular cost message.
However, implementation artifacts can make this information easier to infer. For in-
stance, one technique to implement the meeting scheduling problem as a DCOP solv-
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able by Adopt requires all rewards to be converted into costs by subtracting all rewards
from a large offset number. If this number is high enough, agents can determine the
number of valuations in a cost message by rounding the cost in the message to the near-
est multiple of this number. The results for Adopt assuming the participants in each
cost message are known are presented in Figure 8. Results for scenarios 1, 4 and 5 are
shown withT = 3, the number of valuations plotted on thex-axis and the privacy loss
according to the EntropyTS metric on they-axis.
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unknown case and centralized

These results have much higher privacy loss than those in Figure 4. Thus, if privacy
is a goal, care must be taken with the implementation of distributed algorithms, in this
case Adopt, to ensure that the privacy benefits of asynchrony are realized. In fact, we
observe that SynchID generally falls between Adopt with message participants revealed
and without this information revealed (Figure 8). For example, in Scenario 1 with 3
valuations, Adopt with unknown messages gives a privacy loss of 0.18, compared to
0.22 for SynchID and 0.28 for Adopt with known messages.

Topology: While we held the constraint graph topology fixed as a chain in our
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experiments so far, this experiment investigates the impact of graph topology on privacy
loss. Indeed, DPOP and ADOPT were designed to be run on trees, not chains, and gain
much of their efficiency from that distinction. Figure 9 shows the results of running
DPOP on a tree topology, as compared to the chain. The tree was built by chosing the
most constrained agent as the root, then adding other agents lexicographically. Results
for scenarios 1, 4 and 5 are shown withT = 3, the number of valuations plotted on the
x-axis and the privacy loss according to the EntropyTS metric on they-axis. In all cases,
privacy loss using a tree was higher than that of a chain. This occurs because agents at
the top of a tree will receive information aggregated from smaller groups of agents, due
to the parallelism of the tree. This result shows the privacy-efficiency tradeoff in the
design of DCOP algorithms. While trees provide improved efficiency, they led to more
privacy loss than chains in the scenarios tested.

Inequity in privacy loss: This set of experiments tested whether privacy loss was
equitable across all agents in a chain3. In all scenarios and across both algorithms the
top agent never lost any privacy and the bottom agent lost the most privacy. The pri-
vacy loss of the middle agent(s) varied between these two extremes, but the trend was
that the further down the tree an agent was located, the greater the privacy loss. This
must be factored into algorithms because if ignored,this inequity could undermine the
collaborative efforts of a teamwhose members value privacy.

5 Conclusion & Related Work

DCOP is rapidly emerging as a tool for multiagent coordination. Previous work [Ma-
heswaran et al.2006] showed a negative result on privacy loss in early DCOP algo-
rithms, casting doubt on the efficacy of DCOP in privacy requiring domains. This paper
presents a large-scale investigation of several leading algorithms, including ADOPT and
DPOP, and overturns earlier negative results. Furthermore, we investigated the privacy
side of the privacy/efficiency tradeoff in DCOP design decisions and concluded in ad-
dition: (i) Asynchrony in Adopt improves privacy by obscuring the identities of agents
involved in a message and by making sophisticated inference difficult. This is offset to
a degree by its use of more messages. (ii) Topology has significant impact on system-
wide privacy loss. (iii) Measures of information centralization (MAX) show DCOP
algorithms outperforming a centralized approach, with DPOP, SynchID and ADOPT
performing best. Finally, sophisticated inferences (e.g. our upper bounds) indicate that
there is still work to be done in reducing privacy loss.

Privacy is a major motivation for research in DCOP and its application to software
personal assistants [5,16]. Initial work on privacy [9,12,16] established the importance
of a rigorous understanding of privacy within DisCSP/DCOP. The VPS framework built
on this early work and illustrated how key metrics of privacy from earlier work could
be captured and cross-compared [1]. However, the VPS framework showed privacy loss
to be greater in some DCOP algorithms than in a centralized one. This paper augments
prior work by examining state-of-the-art algorithms not included in [1, 2]. Yokoo et
al [11] discuss a secure DisCSP algorithm that uses cryptographic techniques to ensure

3 graphs omitted due to space constraints
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that strict privacy is maintained during search. As mentioned earlier, such techniques
may not always be practical for reasons of cost or availability, so this paper focuses on
analyzing privacy leakage in non-secure DCOP algorithms.
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